
COP 4710: Database Systems (Chapter 5) Page 1 Dr. Mark Llewellyn ©

COP 4710: Database Systems

Fall 2012

Chapter 5 – Introduction To SQL

Department Of Electrical Engineering and Computer Science

Computer Science Division

University of Central Florida

Instructor : Dr. Mark Llewellyn

 markl@cs.ucf.edu

 HEC 236, 407-823-2790

 http://www.cs.ucf.edu/courses/cop4710/fall2012

COP 4710: Database Systems (Chapter 5) Page 2 Dr. Mark Llewellyn ©

The Physical Design Stage of SDLC

Purpose –programming, testing,

training, installation, documenting

Deliverable – operational programs,

documentation, training materials,

program/data structures

Database activity –

physical database design and

database implementation

Project Identification

 and Selection

Project Initiation

 and Planning

Analysis

Physical Design

Implementation

Maintenance

Logical Design

Implementation

Physical Design

COP 4710: Database Systems (Chapter 5) Page 3 Dr. Mark Llewellyn ©

SQL Overview

• SQL ≡ Structured Query Language.

• The standard for relational database management
systems (RDBMS).

• SQL: 2007 Standards – Purpose:

– Specify syntax/semantics for data definition and
manipulation.

– Define data structures.

– Enable portability.

– Specify minimal (level 1) and complete (level 2) standards.

– Allow for later growth/enhancement to standard.

• SQL: 20XX Standard

COP 4710: Database Systems (Chapter 5) Page 4 Dr. Mark Llewellyn ©

Benefits of a Standardized Relational

Language

• Reduced training costs

• Productivity

• Application portability

• Application longevity

• Reduced dependence on a single vendor

• Cross-system communication

COP 4710: Database Systems (Chapter 5) Page 5 Dr. Mark Llewellyn ©

The SQL Environment
• Catalog

– A set of schemas that constitute the description of a database.

• Schema
– The structure that contains descriptions of objects created by a

user (base tables, views, constraints).

• Data Definition Language (DDL)
– Commands that define a database, including creating, altering,

and dropping tables and establishing constraints.

• Data Manipulation Language (DML)
– Commands that maintain and query a database.

• Data Control Language (DCL)
– Commands that control a database, including administering

privileges and committing data.

COP 4710: Database Systems (Chapter 5) Page 6 Dr. Mark Llewellyn ©

A simplified schematic of a typical SQL environment, as described by

the SQL:20xx standard

Developmental

database

Production

database

COP 4710: Database Systems (Chapter 5) Page 7 Dr. Mark Llewellyn ©

Some SQL Data Types (from Oracle 11g)

• String types
– CHAR(n) – fixed-length character data, n characters long

Maximum length = 2000 bytes

– VARCHAR2(n) – variable length character data, maximum 4000
bytes

– LONG – variable-length character data, up to 4GB. Maximum 1
per table

• Numeric types
– NUMBER(p,q) – general purpose numeric data type

– INTEGER(p) – signed integer, p digits wide

– FLOAT(p) – floating point in scientific notation with p binary
digits precision

• Date/time type
– DATE – fixed-length date/time in dd-mm-yy form

COP 4710: Database Systems (Chapter 5) Page 8 Dr. Mark Llewellyn ©

DDL, DML, DCL, and the database development process

COP 4710: Database Systems (Chapter 5) Page 9 Dr. Mark Llewellyn ©

SQL Database Definition

• Data Definition Language (DDL)

• Major CREATE statements:

– CREATE SCHEMA – defines a portion of the database

owned by a particular user.

– CREATE TABLE – defines a table and its columns.

– CREATE VIEW – defines a logical table from one or

more views.

• Other CREATE statements: CHARACTER SET,

COLLATION, TRANSLATION, ASSERTION,

DOMAIN.

COP 4710: Database Systems (Chapter 5) Page 10 Dr. Mark Llewellyn ©

Table Creation

General syntax for CREATE TABLE

Steps in table creation:

1. Identify data types for

attributes

2. Identify columns that can

and cannot be null

3. Identify columns that must

be unique (candidate keys)

4. Identify primary key-

foreign key mates

5. Determine default values

6. Identify constraints on

columns (domain

specifications)

7. Create the table and

associated indexes

COP 4710: Database Systems (Chapter 5) Page 11 Dr. Mark Llewellyn ©

The following slides create tables for

this enterprise data model

COP 4710: Database Systems (Chapter 5) Page 12 Dr. Mark Llewellyn ©

Examples of SQL database definition commands

COP 4710: Database Systems (Chapter 5) Page 13 Dr. Mark Llewellyn ©

Defining attributes and their data types

Domain

constraint

COP 4710: Database Systems (Chapter 5) Page 14 Dr. Mark Llewellyn ©

Non-null specification

Identifying primary key

Primary keys

can never have

NULL values

COP 4710: Database Systems (Chapter 5) Page 15 Dr. Mark Llewellyn ©

Non-null specifications

Primary key

Some primary keys are composite –

composed of multiple attributes

COP 4710: Database Systems (Chapter 5) Page 16 Dr. Mark Llewellyn ©

Default value

Domain constraint

Controlling the values in attributes

COP 4710: Database Systems (Chapter 5) Page 17 Dr. Mark Llewellyn ©

Primary key of

parent table

Identifying foreign keys and establishing relationships

Foreign key of

dependent table

COP 4710: Database Systems (Chapter 5) Page 18 Dr. Mark Llewellyn ©

Data Integrity Controls

• Referential integrity – constraint that ensures

that foreign key values of a table must match

primary key values of a related table in 1:M

relationships.

• Restricting:

– Deletes of primary records.

– Updates of primary records.

– Inserts of dependent records.

COP 4710: Database Systems (Chapter 5) Page 19 Dr. Mark Llewellyn ©

Relational

integrity is

enforced via

the primary-

key to foreign-

key match

COP 4710: Database Systems (Chapter 5) Page 20 Dr. Mark Llewellyn ©

Changing and Removing Tables

• ALTER TABLE statement allows you to

change column specifications:

– ALTER TABLE CUSTOMER_T ADD (TYPE

VARCHAR(2))

• DROP TABLE statement allows you to

remove tables from your schema:

– DROP TABLE CUSTOMER_T

COP 4710: Database Systems (Chapter 5) Page 21 Dr. Mark Llewellyn ©

Schema Definition

• Control processing/storage efficiency:

– Choice of indexes

– File organizations for base tables

– File organizations for indexes

– Data clustering

– Statistics maintenance

• Creating indexes

– Speed up random/sequential access to base table data

– Example

• CREATE INDEX NAME_IDX ON
CUSTOMER_T(CUSTOMER_NAME)

• This makes an index for the CUSTOMER_NAME field of the
CUSTOMER_T table

COP 4710: Database Systems (Chapter 5) Page 22 Dr. Mark Llewellyn ©

Insert Statement

• Adds data to a table

• Inserting into a table
– INSERT INTO CUSTOMER_T VALUES (001,

‘Contemporary Casuals’, 1355 S. Himes Blvd.’, ‘Gainesville’,
‘FL’, 32601);

• Inserting a record that has some null attributes requires
identifying the fields that actually get data
– INSERT INTO PRODUCT_T (PRODUCT_ID,

PRODUCT_DESCRIPTION,PRODUCT_FINISH, STANDARD_PRICE,
PRODUCT_ON_HAND) VALUES (1, ‘End Table’, ‘Cherry’, 175, 8);

• Inserting from another table
– INSERT INTO CA_CUSTOMER_T SELECT * FROM CUSTOMER_T

WHERE STATE = ‘CA’;

COP 4710: Database Systems (Chapter 5) Page 23 Dr. Mark Llewellyn ©

Delete Statement

• Removes rows from a table.

• Delete certain rows

– DELETE FROM CUSTOMER_T WHERE

STATE = ‘HI’;

• Delete all rows

– DELETE FROM CUSTOMER_T;

COP 4710: Database Systems (Chapter 5) Page 24 Dr. Mark Llewellyn ©

Update Statement

• Modifies data in existing rows

• UPDATE PRODUCT_T SET UNIT_PRICE = 775

WHERE PRODUCT_ID = 7;

COP 4710: Database Systems (Chapter 5) Page 25 Dr. Mark Llewellyn ©

SELECT Statement

• Used for queries on single or multiple tables.

• Clauses of the SELECT statement:
– SELECT

• List the columns (and expressions) that should be returned from the query

– FROM

• Indicate the table(s) or view(s) from which data will be obtained

– WHERE

• Indicate the conditions under which a row will be included in the result

– GROUP BY

• Indicate categorization of results

– HAVING

• Indicate the conditions under which a category (group) will be included

– ORDER BY

• Sorts the result according to specified criteria

COP 4710: Database Systems (Chapter 5) Page 26 Dr. Mark Llewellyn ©

 SQL statement

processing order

COP 4710: Database Systems (Chapter 5) Page 27 Dr. Mark Llewellyn ©

SELECT Example

• Find products with standard price less than $275

SELECT PRODUCT_NAME, STANDARD_PRICE

FROM PRODUCT_V

WHERE STANDARD_PRICE < 275;

COP 4710: Database Systems (Chapter 5) Page 28 Dr. Mark Llewellyn ©

SELECT Example using Alias

• Alias is an alternative column or table name.

SELECT CUST.CUSTOMER AS NAME,

CUST.CUSTOMER_ADDRESS

FROM CUSTOMER_V CUST

WHERE NAME = ‘Home Furnishings’;

COP 4710: Database Systems (Chapter 5) Page 29 Dr. Mark Llewellyn ©

SELECT Example Using a Function

• Using the COUNT aggregate function to find
totals

SELECT COUNT(*) FROM ORDER_LINE_V

WHERE ORDER_ID = 1004;

Note: with aggregate functions you can’t have single-
valued columns included in the SELECT clause

COP 4710: Database Systems (Chapter 5) Page 30 Dr. Mark Llewellyn ©

SELECT Example – Boolean Operators

• AND, OR, and NOT Operators for customizing

conditions in WHERE clause

SELECT PRODUCT_DESCRIPTION, PRODUCT_FINISH,

STANDARD_PRICE

FROM PRODUCT_V

WHERE (PRODUCT_DESCRIPTION LIKE ‘%Desk’

OR PRODUCT_DESCRIPTION LIKE ‘%Table’)

AND UNIT_PRICE > 300;

Note: the LIKE operator allows you to compare strings using wildcards. For

example, the % wildcard in ‘%Desk’ indicates that all strings that have any

number of characters preceding the word “Desk” will be allowed

COP 4710: Database Systems (Chapter 5) Page 31 Dr. Mark Llewellyn ©

SELECT Example –

Sorting Results with the ORDER BY Clause

• Sort the results first by STATE, and within a state
by CUSTOMER_NAME

SELECT CUSTOMER_NAME, CITY, STATE

FROM CUSTOMER_V

WHERE STATE IN (‘FL’, ‘TX’, ‘CA’, ‘HI’)

ORDER BY STATE, CUSTOMER_NAME;

Note: the IN operator in this example allows you to include rows whose

STATE value is either FL, TX, CA, or HI. It is more efficient than separate

OR conditions

COP 4710: Database Systems (Chapter 5) Page 32 Dr. Mark Llewellyn ©

SELECT Example –
Categorizing Results Using the GROUP BY Clause

• For use with aggregate functions
– Scalar aggregate: single value returned from SQL query with aggregate

function

– Vector aggregate: multiple values returned from SQL query with

aggregate function (via GROUP BY)

SELECT STATE, COUNT(STATE)

FROM CUSTOMER_V

GROUP BY STATE;

Note: you can use single-value fields with aggregate functions

if they are included in the GROUP BY clause.

COP 4710: Database Systems (Chapter 5) Page 33 Dr. Mark Llewellyn ©

SELECT Example –
Qualifying Results by Category Using the HAVING Clause

• For use with GROUP BY

SELECT STATE, COUNT(STATE)

FROM CUSTOMER_V

GROUP BY STATE

HAVING COUNT(STATE) > 1;

Like a WHERE clause, but it operates on groups (categories), not on

individual rows. Here, only those groups with total numbers greater than

1 will be included in final result

COP 4710: Database Systems (Chapter 5) Page 34 Dr. Mark Llewellyn ©

Processing Multiple Tables – Joins

• Join – a relational operation that causes two or more tables with a

common domain to be combined into a single table or view

• Equi-join – a join in which the joining condition is based on equality

between values in the common columns; common columns appear
redundantly in the result table

• Natural join – an equi-join in which one of the duplicate columns is

eliminated in the result table

• Outer join – a join in which rows that do not have matching values in

common columns are nonetheless included in the result table (as opposed
to inner join, in which rows must have matching values in order to appear
in the result table)

• Union join – includes all columns from each table in the join, and an

instance for each row of each table

The common columns in joined tables are usually the primary key of the

dominant table and the foreign key of the dependent table in 1:M relationships

COP 4710: Database Systems (Chapter 5) Page 35 Dr. Mark Llewellyn ©

Same Scenario As Page 11

COP 4710: Database Systems (Chapter 5) Page 36 Dr. Mark Llewellyn ©

These tables are used in queries that follow

COP 4710: Database Systems (Chapter 5) Page 37 Dr. Mark Llewellyn ©

• For each customer who placed an order, what is the
customer’s name and order number?

SELECT CUSTOMER_T.CUSTOMER_ID, CUSTOMER_NAME, ORDER_ID

FROM CUSTOMER_T, ORDER_T

WHERE CUSTOMER_T.CUSTOMER_ID = ORDER_T.CUSTOMER_ID;

Join involves multiple tables in FROM clause

Natural Join Example

WHERE clause performs the

equality check for common

columns of the two tables

COP 4710: Database Systems (Chapter 5) Page 38 Dr. Mark Llewellyn ©

• List the customer name, ID number, and order number
for all customers. Include customer information even
for customers that do have an order

SELECT CUSTOMER_T.CUSTOMER_ID, CUSTOMER_NAME,

ORDER_ID

FROM CUSTOMER_T, LEFT OUTER JOIN ORDER_T

ON CUSTOMER_T.CUSTOMER_ID = ORDER_T.CUSTOMER_ID;

Outer Join Example (Microsoft Syntax)

LEFT OUTER JOIN syntax with

ON keyword instead of WHERE

 causes customer data to appear

even if there is no corresponding

order data

COP 4710: Database Systems (Chapter 5) Page 39 Dr. Mark Llewellyn ©

Results

COP 4710: Database Systems (Chapter 5) Page 40 Dr. Mark Llewellyn ©

• List the customer name, ID number, and order number for
all customers. Include customer information even for
customers that do have an order

SELECT CUSTOMER_T.CUSTOMER_ID, CUSTOMER_NAME, ORDER_ID

FROM CUSTOMER_T, ORDER_T

WHERE CUSTOMER_T.CUSTOMER_ID = ORDER_T.CUSTOMER_ID(+);

Outer Join Example (Oracle Syntax)

Outer join in Oracle uses regular join

syntax, but adds (+) symbol to the

side that will have the missing data

COP 4710: Database Systems (Chapter 5) Page 41 Dr. Mark Llewellyn ©

• Assemble all information necessary to create an invoice
for order number 1006

SELECT CUSTOMER_T.CUSTOMER_ID, CUSTOMER_NAME,

CUSTOMER_ADDRESS, CITY, SATE, POSTAL_CODE,
ORDER_T.ORDER_ID, ORDER_DATE, QUANTITY,
PRODUCT_NAME, UNIT_PRICE, (QUANTITY * UNIT_PRICE)

FROM CUSTOMER_T, ORDER_T, ORDER_LINE_T, PRODUCT_T

WHERE CUSTOMER_T.CUSTOMER_ID =
ORDER_LINE.CUSTOMER_ID AND ORDER_T.ORDER_ID =
ORDER_LINE_T.ORDER_ID

 AND ORDER_LINE_T.PRODUCT_ID =
PRODUCT_PRODUCT_ID

 AND ORDER_T.ORDER_ID = 1006;

Four tables involved in this join

Multiple Table Join Example

Each pair of tables requires an equality-check condition in the WHERE clause,

matching primary keys against foreign keys

COP 4710: Database Systems (Chapter 5) Page 42 Dr. Mark Llewellyn ©

Results from a four-table join

From CUSTOMER_T table

From ORDER_T table From PRODUCT_T table

COP 4710: Database Systems (Chapter 5) Page 43 Dr. Mark Llewellyn ©

Processing Multiple Tables Using Subqueries

• Subquery – placing an inner query (SELECT
statement) inside an outer query.

• Options:

– In a condition of the WHERE clause.

– As a “table” of the FROM clause.

– Within the HAVING clause.

• Subqueries can be:

– Noncorrelated – executed once for the entire outer query.

– Correlated – executed once for each row returned by the
outer query.

COP 4710: Database Systems (Chapter 5) Page 44 Dr. Mark Llewellyn ©

• Show all customers who have placed an order.

SELECT CUSTOMER_NAME FROM CUSTOMER_T

WHERE CUSTOMER_ID IN

 (SELECT DISTINCT CUSTOMER_ID FROM ORDER_T);

Subquery Example

Subquery is embedded in

parentheses. In this case it

returns a list that will be used

in the WHERE clause of the

outer query

The IN operator will test to see if the

CUSTOMER_ID value of a row is

included in the list returned from the

subquery

COP 4710: Database Systems (Chapter 5) Page 45 Dr. Mark Llewellyn ©

Correlated vs. Noncorrelated Subqueries

• Noncorrelated subqueries:

– Do not depend on data from the outer query.

– Execute once for the entire outer query.

• Correlated subqueries:

– Make use of data from the outer query.

– Execute once for each row of the outer query.

– Can use the EXISTS operator.

COP 4710: Database Systems (Chapter 5) Page 46 Dr. Mark Llewellyn ©

 Processing a

noncorrelated

subquery

No reference to data

in outer query, so

subquery executes

once only

These are the only
customers that have
IDs in the ORDER_T
table

1. The subquery
executes and
returns the
customer IDs from
the ORDER_T table

2. The outer query on

the results of the
subquery

COP 4710: Database Systems (Chapter 5) Page 47 Dr. Mark Llewellyn ©

• Show all orders that include furniture finished in natural
ash

SELECT DISTINCT ORDER_ID FROM ORDER_LINE_T

WHERE EXISTS

 (SELECT * FROM PRODUCT_T

 WHERE PRODUCT_ID = ORDER_LINE_T.PRODUCT_ID

 AND PRODUCT_FINISH = ‘Natural ash’);

Correlated Subquery Example

The subquery is testing for a value

that comes from the outer query

The EXISTS operator will return a

TRUE value if the subquery resulted

in a non-empty set, otherwise it

returns a FALSE

COP 4710: Database Systems (Chapter 5) Page 48 Dr. Mark Llewellyn ©

Processing a

correlated

subquery Subquery refers to outer-

query data, so executes once

for each row of outer query

Note: only the
orders that
involve products
with Natural
Ash will be
included in the
final results

COP 4710: Database Systems (Chapter 5) Page 49 Dr. Mark Llewellyn ©

• Show all products whose price is higher than the average

SELECT PRODUCT_DESCRIPTION, STANDARD_PRICE, AVGPRICE

FROM

(SELECT AVG(STANDARD_PRICE) AVGPRICE FROM PRODUCT_T),

PRODUCT_T

WHERE STANDARD_PRICE > AVG_PRICE;

Another Subquery Example

The WHERE clause normally cannot include aggregate functions, but because the aggregate is

performed in the subquery its result can be used in the outer query’s WHERE clause

One column of the subquery is an

aggregate function that has an alias

name. That alias can then be referred

to in the outer query

Subquery forms the derived table used

in the FROM clause of the outer query

COP 4710: Database Systems (Chapter 5) Page 50 Dr. Mark Llewellyn ©

SQL Join Operations

• The SQL join operations merge rows from two tables and

returns the rows that:

1. Have common values in common columns (natural join) or,

2. Meet a given join condition (equality or inequality) or,

3. Have common values in common columns or have no matching

values (outer join).

• We’ve already examined the basic form of an SQL join

which occurs when two tables are listed in the FROM clause

and the WHERE clause specifies the join condition.

• An example of this basic form of the join is shown on the

next page.

COP 4710: Database Systems (Chapter 5) Page 51 Dr. Mark Llewellyn ©

SQL Join Operations (cont.)

• The FROM clause indicates which tables are to be joined. If
three or more tables are specified, the join operation takes
place two tables at a time, starting from left to right.

• The join condition is specified in the WHERE clause. In the
example, a natural join is effected on the attribute V_CODE.

• The SQL join syntax shown above is sometimes referred to
as an “old-style” join.

• The tables on pages 55 and 56, summarize the SQL join
operations.

SELECT P_CODE, P_DESCRIPT, P_PRICE, V_NAME

 FROM PRODUCT, VENDOR

 WHERE PRODUCT.V_CODE = VENDOR.V_CODE;

COP 4710: Database Systems (Chapter 5) Page 52 Dr. Mark Llewellyn ©

SQL Cross Join Operation

• A cross join in SQL is equivalent to a Cartesian

product in standard relational algebra. The cross

join syntax is:

SELECT column-list

 FROM table1, table2;

SELECT column-list

 FROM table1 CROSS JOIN table2;

old style syntax

new style syntax

COP 4710: Database Systems (Chapter 5) Page 53 Dr. Mark Llewellyn ©

SQL Natural Join Operation

• The natural join syntax is:

• The natural join will perform the following tasks:

– Determine the common attribute(s) by looking for

attributes with identical names and compatible data types.

– Select only the rows with common values in the common

attribute(s).

– If there are no common attributes, return the cross join of

the two tables.

SELECT column-list

 FROM table1 NATURAL JOIN table2;

new style syntax

COP 4710: Database Systems (Chapter 5) Page 54 Dr. Mark Llewellyn ©

SQL Natural Join Operation (cont.)

• The syntax for the old-style natural join is:

• One important difference between the natural join

and the “old-style” syntax is that the natural join

does not require the use of a table qualifier for the

common attributes. The two SELECT statements

shown on the next page are equivalent.

SELECT column-list

 FROM table1, table2

 WHERE table1.C1 = table2.C2;

old style syntax

COP 4710: Database Systems (Chapter 5) Page 55 Dr. Mark Llewellyn ©

SQL Natural Join Operation (cont.)

SELECT CUS_NUM, CUS_LNAME,

 INV_NUMBER, INV_DATE

 FROM CUSTOMER, INVOICE

 WHERE CUSTOMER.CUS_NUM = INVOICE. CUS_NUM;

old style

syntax

SELECT CUS_NUM, CUS_LNAME,

 INV_NUMBER, INV_DATE

 FROM CUSTOMER NATURAL JOIN INVOICE;

old style

syntax

COP 4710: Database Systems (Chapter 5) Page 56 Dr. Mark Llewellyn ©

Join With Using Clause

• A second way to express a join is through the

USING keyword. This query will return only the

rows with matching values in the column indicated

in the USING clause. The column listed in the

USING clause must appear in both tables.

• The syntax is:

SELECT column-list

 FROM table1 JOIN table2 USING (common-column);

COP 4710: Database Systems (Chapter 5) Page 57 Dr. Mark Llewellyn ©

Join With Using Clause (cont.)

• An example:

• As was the case with the natural join command, the
JOIN USING does not required the use of qualified
names (qualified table names). In fact, Oracle 11g
will return an error if you specify the table name in
the USING clause.

SELECT INV_NUMBER, P_CODE, P_DESCRIPT, LINE_UNITS,

 LINE_PRICE

 FROM INVOICE JOIN LINE USING (INV_NUMBER)

 JOIN PRODUCT USING (P_CODE);

COP 4710: Database Systems (Chapter 5) Page 58 Dr. Mark Llewellyn ©

Join On Clause

• Both the NATURAL JOIN and the JOIN USING commands

use common attribute names in joining tables.

• Another way to express a join when the tables have no

common attribute names is to use the JOIN ON operand.

This query will return only the rows that meet the indicated

condition. The join condition will typically include an

equality comparison expression of two columns. The

columns may or may not share the same name, but must

obviously have comparable data types.

• The syntax is:

SELECT column-list

 FROM table1 JOIN table2 ON join-condition;

COP 4710: Database Systems (Chapter 5) Page 59 Dr. Mark Llewellyn ©

Join On Clause (cont.)

• An example:

• Notice in the example query, that unlike the NATURAL
JOIN and the JOIN USING operation, the JOIN ON clause
requires the use of table qualifiers for the common attributes.
If you do not specify the table qualifier you will get a
“column ambiguously defined” error message.

• Keep in mind that the JOIN ON syntax allows you to
perform a join even when the tables do not share a common
attribute name.

SELECT INVOICE.INV_NUMBER, P_CODE, P_DESCRIPT, LINE_UNITS, LINE_PRICE

 FROM INVOICE JOIN LINE ON INVOICE.INV_NUMBER = LINE.INV_NUMBER

 JOIN PRODUCT ON LINE.P_CODE = PRODUCT.P_CODE;

COP 4710: Database Systems (Chapter 5) Page 60 Dr. Mark Llewellyn ©

Join On Clause (cont.)

• For example, to general a list of all employees with

the manager’s name you can use the recursive query

shown below which utilizes the JOIN ON clause.

SELECT E.EMP_MGR, M.EMP_LNAME, E.EMP_NUM, E.EMP_LNAME

 FROM EMP E JOIN EMP M ON E.EMP_MGR = M.EMP_NUM

 ORDER BY E.EMP_MGR;

COP 4710: Database Systems (Chapter 5) Page 61 Dr. Mark Llewellyn ©

Outer Joins

• We saw the forms for the LEFT OUTER JOIN and the

RIGHT OUTER JOIN in the previous set of notes.

• There is also a FULL OUTER JOIN operation in SQL. A

full outer join returns not only the rows matching the join

condition (that is, rows with matching values in the common

column(s)), but also all the rows with unmatched values in

either side table.

• The syntax of a full outer join is:

SELECT column-list

 FROM table1 FULL [OUTER] JOIN table2 ON join-condition;

COP 4710: Database Systems (Chapter 5) Page 62 Dr. Mark Llewellyn ©

Outer Joins (cont.)

• The following example will list the product code,

vendor code, and vendor name for all products and

include all the product rows (products without

matching vendors) and also all vendor rows

(vendors without matching products):

SELECT P_CODE, VENDOR.V_CODE, V_NAME

 FROM VENDOR FULL OUTER JOIN PRODUCT

 ON VENDOR.V_CODE = PRODUCT.V_CODE;

COP 4710: Database Systems (Chapter 5) Page 63 Dr. Mark Llewellyn ©

Outer Joins (cont.)

• The following example will hopefully illustrate how

outer joins work. Shown below is the ERD for the

database:

COP 4710: Database Systems (Chapter 5) Page 64 Dr. Mark Llewellyn ©

Outer Joins (cont.)

• Suppose that we want to run the query: For each

customer, what is the customer’s id, name and order

number?

• Notice that the ERD states that a customer may not

place any orders, so when joining the customer table

with the order table those customers without an

order will not participate in the join if a natural join

is used. However, a left outer join will include

those customers who have not placed an order.

• Look at the instance data on the next page.

COP 4710: Database Systems (Chapter 5) Page 65 Dr. Mark Llewellyn ©

Outer Joins (cont.)
Order_T Table

Part of the Customer_T Table

Note that customer #’s 6, 7, 9, 10,

13, and 14 have not placed an order

COP 4710: Database Systems (Chapter 5) Page 66 Dr. Mark Llewellyn ©

Outer Joins (cont.)
The SQL Query

Result set

Note that customer #’s 6, 7, 9, 10,

13, and 14 are not in the result set

using a natural join

COP 4710: Database Systems (Chapter 5) Page 67 Dr. Mark Llewellyn ©

Outer Joins (cont.)
The SQL Query

Result set

Note that customer #’s 6, 7, 9, 10,

13, and 14 are in the result set using

a left outer join

COP 4710: Database Systems (Chapter 5) Page 68 Dr. Mark Llewellyn ©

Summary of SQL JOIN Operations

Join

Classification

Join Type SQL Syntax Example Description

Cross CROSS

JOIN

SELECT *

FROM T1, T2;

Old style. Returns the Cartesian product of T1 and

T2

SELECT *

FROM T1 CROSS JOIN T2;

New style. Returns the Cartesian product of T1 and

T2.

Inner Old Style

JOIN

SELECT *

FROM T1, T2

WHERE T1.C1 = T2.C1

Returns only the rows that meet the join condition in

the WHERE clause – old style. Only rows with

matching values are selected.

NATURAL

JOIN

SELECT *

FROM T1 NATURAL JOIN T2

Returns only the rows with matching values in the

matching columns. The matching columns must

have the same names and similar data types.

JOIN USING SELECT *

FROM T1 JOIN T2 USING

(C1)

Returns only the rows with matching values in the

columns indicated in the USING clause.

JOIN ON SELECT *

FROM T1 JOIN T2

 ON T1.C1 = T2.C1

Returns only the rows that meet the join condition

indicated in the ON clause.

COP 4710: Database Systems (Chapter 5) Page 69 Dr. Mark Llewellyn ©

Summary of SQL JOIN Operations (cont.)

Join

Classification

Join Type SQL Syntax Example Description

Outer LEFT JOIN SELECT *

FROM T1 LEFT OUTER

JOIN T2

ON T1.C1= T2.C1

Returns rows with matching values and includes all

rows from the left table (T1) with unmatched values.

RIGHT JOIN SELECT *

FROM T1 RIGHT OUTER

JOIN T2

ON T1.C1= T2.C1

Returns rows with matching values and includes all

rows from the right table (T2) with unmatched

values.

FULL JOIN SELECT *

FROM T1 FULL OUTER

JOIN T2

ON T1.C1= T2.C1

Returns rows with matching values and includes all

rows from both tables (T1 and T2) with unmatched

values.

COP 4710: Database Systems (Chapter 5) Page 70 Dr. Mark Llewellyn ©

Subqueries and Correlated Queries

• The use of joins allows a RDBMS go get information from

two or more tables. The data from the tables is processed

simultaneously.

• It is often necessary to process data based on other processed

data. Suppose, for example, that you want to generate a list

of vendors who provide products. (Recall that not all

vendors in the VENDOR table have provided products –

some of them are only potential vendors.)

• The following query will accomplish our task:

SELECT V_CODE, V_NAME

 FROM VENDOR

 WHERE V_CODE NOT IN (SELECT V_CODE FROM PRODUCT);

COP 4710: Database Systems (Chapter 5) Page 71 Dr. Mark Llewellyn ©

Subqueries and Correlated Queries (cont.)

• A subquery is a query (SELECT statement) inside a query.

• A subquery is normally expressed inside parentheses.

• The first query in the SQL statement is known as the outer
query.

• The second query in the SQL statement is known as the inner
query.

• The inner query is executed first.

• The output of the inner query is used as the input for the
outer query.

• The entire SQL statement is sometimes referred to as a
nested query.

COP 4710: Database Systems (Chapter 5) Page 72 Dr. Mark Llewellyn ©

Subqueries and Correlated Queries (cont.)

• A subquery can return:

1. One single value (one column and one row). This subquery can be

used anywhere a single value is expected. For example, in the right

side of a comparison expression.

2. A list of values (one column and multiple rows). This type of

subquery can be used anywhere a list of values is expected. For

example, when using the IN clause.

3. A virtual table (multi-column, multi-row set of values). This type of

subquery can be used anywhere a table is expected. For example, in

the FROM clause.

4. No value at all, i.e., NULL. In such cases, the output of the outer

query may result in an error or null empty set, depending on where

the subquery is used (in a comparison, an expression, or a table set).

COP 4710: Database Systems (Chapter 5) Page 73 Dr. Mark Llewellyn ©

Correlated Queries
• A correlated query (really a subquery) is a subquery that contains a

reference to a table that also appears in the outer query.

• A correlated query has the following basic form:

• Notice that the subquery contains a reference to a column of table1,

even though the subquery’s FROM clause doesn’t mention table1.

Thus, query execution requires a look outside the subquery, and finds the

table reference in the outer query.

SELECT * FROM table1 WHERE col1 = ANY

 (SELECT col1 FROM table2

 WHERE table2.col2 = table1.col1);

COP 4710: Database Systems (Chapter 5) Page 74 Dr. Mark Llewellyn ©

WHERE Subqueries

• The most common type of subquery uses an inner SELECT

subquery on the right hand side of a WHERE comparison

expression.

• For example, to find all products with a price greater than or

equal to the average product price, the following query

would be needed:

SELECT P_CODE, P_PRICE

 FROM PRODUCT

 WHERE P_PRICE >= (SELECT AVG(P_PRICE)

 FROM PRODUCT);

COP 4710: Database Systems (Chapter 5) Page 75 Dr. Mark Llewellyn ©

WHERE Subqueries (cont.)

• Subqueries can also be used in combination with joins.

• The query below lists all the customers that ordered the

product “Claw hammer”.

SELECT DISTINCT CUS_CODE, CUS_LNAME, CUYS_FNAME

 FROM CUSTOMER JOIN INVOICE USING (CUS_CODE)

 JOIN LINE USING (INV_NUMBER)

 JOIN PRODUCT USING (P_CODE)

 WHERE P_CODE = (SELECT P_CODE

 FROM PRODUCT

 WHERE P_DESCRIPT = “Claw hammer”);

COP 4710: Database Systems (Chapter 5) Page 76 Dr. Mark Llewellyn ©

WHERE Subqueries (cont.)

• Notice that the previous query could have been written as:

• However, what would happen if two or more product

descriptions contain the string “Claw hammer”?

– You would get an error message because only a single

value is expected on the right hand side of this expression.

SELECT DISTINCT CUS_CODE, CUS_LNAME, CUYS_FNAME

 FROM CUSTOMER JOIN INVOICE USING (CUS_CODE)

 JOIN LINE USING (INV_NUMBER)

 JOIN PRODUCT USING (P_CODE)

 WHERE P_DESCRIPT = ‘Claw hammer’);

COP 4710: Database Systems (Chapter 5) Page 77 Dr. Mark Llewellyn ©

IN Subqueries

• To handle the problem we just saw, the IN operand must be

used.

• The query below lists all the customers that ordered any kind

of hammer or saw.

SELECT DISTINCT CUS_CODE, CUS_LNAME, CUYS_FNAME

 FROM CUSTOMER JOIN INVOICE USING (CUS_CODE)

 JOIN LINE USING (INV_NUMBER)

 JOIN PRODUCT USING (P_CODE)

 WHERE P_CODE IN (SELECT P_CODE

 FROM PRODUCT

 WHERE P_DESCRIPT LIKE ‘%hammer%’

 OR P_DESCRIPT LIKE ‘%saw%’);

COP 4710: Database Systems (Chapter 5) Page 78 Dr. Mark Llewellyn ©

HAVING Subqueries

• It is also possible to use subqueries with a HAVING clause.

• Recall that the HAVING clause is used to restrict the output

of a GROUP BY query by applying a conditional criteria to

the grouped rows.

• For example, the following query will list all products with

the total quantity sold greater than the average quantity sold.

SELECT DISTINCT P_CODE, SUM(LINE_UNITS)

 FROM LINE

 GROUP BY P_CODE

 HAVING SUM(LINE_UNITS) > (SELECT AVG(LINE_UNITS)

 FROM LINE);

COP 4710: Database Systems (Chapter 5) Page 79 Dr. Mark Llewellyn ©

Multi-row Subquery Operators: ANY and ALL

• The IN subquery uses an equality operator; that is, it only

selects those rows that match at least one of the values in the

list. What happens if you need to do an inequality

comparison of one value to a list of values?

• For example, suppose you want to know what products have

a product cost that is greater than all individual product costs

for products provided by vendors from Florida.

SELECT P_CODE, P_ONHAND*P_PRICE

 FROM PRODUCT

 WHERE P_ONHAND*P_PRICE > ALL (SELECT P_ONHAND*P_PRICE

 FROM PRODUCT

 WHERE V_CODE IN (SELECT V_CODE

 FROM VENDOR

 WHERE V_STATE= ‘FL’));

COP 4710: Database Systems (Chapter 5) Page 80 Dr. Mark Llewellyn ©

FROM Subqueries

• In all of the cases of subqueries we’ve seen so far, the subquery was part
of a conditional expression and it always appeared on the right hand side
of an expression. This is the case for WHERE, HAVING, and IN
subqueries as well as for the ANY and ALL operators.

• Recall that the FROM clause specifies the table(s) from which the data
will be drawn. Because the output of a SELECT statement is another
table (or more precisely, a “virtual table”), you could use a SELECT
subquery in the FROM clause.

• For example, suppose that you want to know all customers who have
purchased products 13-Q2/P2 and 23109-HB. Since all product
purchases are stored in the LINE table, it is easy to find out who
purchased any given product just by searching the P_CODE attribute in
the LINE table. However, in this case, you want to know all customers
who purchased both, not just one.

• The query on the next page accomplishes this task.

COP 4710: Database Systems (Chapter 5) Page 81 Dr. Mark Llewellyn ©

FROM Subqueries (cont.)

SELECT DISTINCT CUSTOMER.CUS_CODE , CUSTOMER.LNAME

 FROM CUSTOMER, (SELECT INVOICE.CUS_CODE

 FROM INVOICE NATURAL JOIN LINE

 WHERE P_CODE = ’13-Q2/P2’) CP1,

 (SELECT INVOICE.CUS_CODE

 FROM INVOICE NATURAL JOIN LINE

 WHERE P_CODE = ‘23109-HB’) CP2

 WHERE CUSTOMER.CUS_CODE = CP1.CUS_CODE

 AND CP1.CUS_CODE = CP2.CUS_CODE;

COP 4710: Database Systems (Chapter 5) Page 82 Dr. Mark Llewellyn ©

Conditional Expressions Using Case Syntax

This is available with

newer versions of SQL,

previously not part of

the standard

COP 4710: Database Systems (Chapter 5) Page 83 Dr. Mark Llewellyn ©

Ensuring Transaction Integrity

• Transaction = A discrete unit of work that must be
completely processed or not processed at all

– May involve multiple updates

– If any update fails, then all other updates must be cancelled

• SQL commands for transactions

• BEGIN TRANSACTION/END TRANSACTION

– Marks boundaries of a transaction

– COMMIT

• Makes all updates permanent

– ROLLBACK

• Cancels updates since the last COMMIT

COP 4710: Database Systems (Chapter 5) Page 84 Dr. Mark Llewellyn ©

An SQL Transaction sequence (in pseudocode)

COP 4710: Database Systems (Chapter 5) Page 85 Dr. Mark Llewellyn ©

Data Dictionary Facilities

• System tables that store metadata

• Users usually can view some of these tables

• Users are restricted from updating them

• Examples in Oracle 11g

– DBA_TABLES – descriptions of tables

– DBA_CONSTRAINTS – description of constraints

– DBA_USERS – information about the users of the system

• Examples in Microsoft SQL Server

– SYSCOLUMNS – table and column definitions

– SYSDEPENDS – object dependencies based on foreign keys

– SYSPERMISSIONS – access permissions granted to users

COP 4710: Database Systems (Chapter 5) Page 86 Dr. Mark Llewellyn ©

SQL:2007

Enhancements/Extensions

• User-defined data types (UDT)

– Subclasses of standard types or an object type

• Analytical functions (for OLAP)

• Persistent Stored Modules (SQL/PSM)

– Capability to create and drop code modules

– New statements:

• CASE, IF, LOOP, FOR, WHILE, etc.

• Makes SQL into a procedural language

• Oracle has propriety version called PL/SQL, and
Microsoft SQL Server has Transact/SQL

COP 4710: Database Systems (Chapter 5) Page 87 Dr. Mark Llewellyn ©

Routines and Triggers

• Routines

– Program modules that execute on demand

– Functions – routines that return values and take

input parameters

– Procedures – routines that do not return values

and can take input or output parameters

• Triggers

– Routines that execute in response to a database

event (INSERT, UPDATE, or DELETE)

COP 4710: Database Systems (Chapter 5) Page 88 Dr. Mark Llewellyn ©

Triggers contrasted with stored procedures

Procedures are called explicitly

Triggers are event-driven

COP 4710: Database Systems (Chapter 5) Page 89 Dr. Mark Llewellyn ©

Oracle PL/SQL trigger syntax

SQL:2007 Create routine syntax

COP 4710: Database Systems (Chapter 5) Page 90 Dr. Mark Llewellyn ©

Embedded and Dynamic SQL

• Embedded SQL

– Including hard-coded SQL statements in a program

written in another language such as C or Java

• Dynamic SQL

– Ability for an application program to generate

SQL code on the fly, as the application is running

